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Many modern NLP 
approaches are implemented 
using deep learning.
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How does deep learning work?

Input Output
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Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this 
representation do not correspond to specific, known 
attributes
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Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this 
representation do not correspond to specific, known 
attributes

• Structure of the deep learning model is 
determined at least partially by a hyperparameter 
tuning process
• Many experiments will be run using different 

hyperparameter combinations to determine what 
leads to the best performance on the validation data
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Common Themes across Deep Learning 
Approaches
• Input is typically a dense vector representation
• In most cases, the dimensions within this representation 

do not correspond to specific, known attributes

• Structure of the deep learning model is determined 
at least partially by a hyperparameter tuning process
• Many experiments will be run using different 

hyperparameter combinations to determine what leads to 
the best performance on the validation data

• Output is task-dependent
• Can be a class label, a number, or a string of generated 

text

• Training can be performed end-to-end
• The model is trained to predict the target output directly, 

rather than through pipelined components
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Despite these 
common 

themes, deep 
learning 

models are 
implemented in 
many different 

ways!

• They may vary in how they:

• Handle prior context

• Draw inferences from the data

• Pass data between layers

• These variations make different kinds of 
deep learning models work better for 
different tasks
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This 
Week’s 
Topics
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Popular Deep Learning Architectures in 
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers
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Recurrent Neural Networks (RNNs)

• General premise:

• Deep learning models should be making decisions for sequential input based on decisions that 
have already been made at earlier points of the sequence

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for recurrent neural networks:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer 
+ a vector of numbers representing the layer’s output at the previous timestep
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Structure of Single-Unit RNN Layer

xt

Current input
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Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt
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Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation 
value from previous input)
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Structure of Single-Unit RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation 
value from previous input)

Natalie Parde - UIC CS 421 16



Why is this 
useful for NLP 
problems?

• Most data for NLP tasks is inherently 
sequential!

• Making use of sequences using feedforward 
neural networks requires:

• Fixed-length context windows

• Concatenated context vectors

• This limits the model’s abilities, and prevents it 
from considering variable-length context
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There are many popular variations of RNNs.

• “Standard” RNNs are often referred to informally as vanilla RNNs

• Some RNN architectures are modified to specifically improve the model’s ability to 
consider long-term context

• Long short-term memory networks (LSTMs)

• Gated recurrent units (GRUs)

xt ht yt
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Long Short-Term Memory Networks (LSTMs)

• Specialized RNN units that incorporate 
gating mechanisms to remove 
information that is no longer needed 
from the context, and add information 
that is anticipated to be of use later

• Gating mechanisms include:

• Forget gate: Should we erase this 
existing information from the context?

• Add gate: Should we write this new 
information to the context?

• Output gate: What information should 
be leveraged for the current hidden 
state?
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Gated Recurrent Units (GRUs)

• Also utilizes gating mechanisms to 
manage contexts, but uses a 
simpler architecture than LSTMs

• Only two gates:

• Reset gate: Which elements of 
the previous hidden state are 
relevant to the current context?

• Update gate: Which elements of 
the intermediate hidden state 
and of the previous hidden state 
need to be preserved for future 
use?
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Overall, comparing inputs and outputs for 
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU
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When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which you need to train 
your model quickly and don’t have access to high-performance 
computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the same tasks

Why use LSTMs instead of GRUs?
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Bidirectional 
Models

• All RNN units can be combined 
with one another in the same 
way that feedforward units can 
be combined

• Layers of vanilla RNN units

• Layers of LSTM units

• Layers of GRU units

• These layers can also be 
combined to implement 
bidirectional architectures that 
process input both from 
beginning to end and from end 
to beginning
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Bidirectional RNNs

RNNNatalie ran to LC C006
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Bidirectional RNNs

RNN

RNN
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Bidirectional RNNs
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Sequence Classification with a Bidirectional 
RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN
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+
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Convolutional Neural Networks (CNNs)

• General premise:

• Deep learning models should be making decisions based on local regions of the context

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for convolutional neural networks:

• Input to a layer is the output of convolutional operations performed on subsets of the 
output from the previous layer
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In NLP, convolutions are typically performed on 
entire rows of an input matrix, where each row 
corresponds to a word.
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.



We apply convolutions with specific region (kernel) and 
stride sizes to an input matrix, and end up with a feature 
map.
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Typically, we learn multiple feature maps and then reduce the 
dimensionality of the learned feature maps by pooling (e.g., taking the 
average or maximum) subsets of their values.

• This is done to:

• Further increase efficiency

• Improve the model’s invariance to small changes in the input
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The output from pooling layers is typically then passed along 
as input to one or more feedforward layers.

Input Output
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Why use CNNs for an NLP task?

• Originally designed for image classification!

• However, offers unique advantages for NLP tasks:

• Extracts meaningful local structures from input

• Increases efficiency of the training process relative to feedforward neural networks
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Transformers

• General premise:

• Deep learning models don’t need to wait to process items one after the other to incorporate 
sequential information

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for recurrent neural networks:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer 
+ a vector of numbers representing the layer’s output at the previous timestep

• Modification for Transformers:

• Input to a feedforward layer is the output from a self-attention layer computed over the entire 
input sequence, indicating which words in the sequence are most important to one another
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q$ = 𝐖𝐐𝐱$
• k$ = 𝐖𝐊𝐱$
• v$ = 𝐖𝐕𝐱$
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Bidirectional Self-Attention Layer
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q$ = 𝐖𝐐𝐱$
• k$ = 𝐖𝐊𝐱$
• v$ = 𝐖𝐕𝐱$

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score$( = 𝐪$ . 𝐤(

• 𝛼$( =
)*+(score!")

∑#$%
& )*+(score!#)
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Bidirectional Self-Attention Layer
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Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q+ = 𝐖𝐐𝐱+
• k+ = 𝐖𝐊𝐱+
• v+ = 𝐖𝐕𝐱+

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise 
comparison scores between all possible query-key pairs in the full input sequence

• score+/ = 𝐪+ - 𝐤/

• 𝛼+/ =
012(score!")

∑#$%
& 012(score!#)

3. Compute the output vector 𝐲! as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑/789 𝛼+/v/
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Bidirectional Self-Attention Layer
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Transformer 
Blocks

• Transformers are implemented by 
stacking one or more blocks of the 
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual 
connections between them even 
though they do not immediately 
precede or proceed one another

Input
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Week’s 
Topics

Natalie Parde - UIC CS 421 45

Tuesday

Popular Deep Learning 
Architectures
Pretraining, Finetuning, 
and Prompting

Thursday

Reproducibility Workshop



Bidirectional Encoder Representations from 
Transformers (BERT)
• The most popular Transformer-based architecture for NLP tasks

• Implemented using:

• 12 Transformer blocks, each of which have 12 attention heads in each self-attention layer

• 768-dimensional hidden layers

• A subword vocabulary of 30,000 tokens

• A fixed input length of 512 subword tokens

• Overall, this means that the model has 100,000,000 trainable parameters!

Natalie Parde - UIC CS 421 46



BERT is trained to perform two tasks.

• Masked language modeling
• Randomly select a subset of tokens from the training input and:

• Replace some of them with [MASK] tokens

• Replace some of them with other randomly sampled tokens

• Leave some of them unchanged

• For each sampled token, try to predict what the correct token is
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Masked Language Modeling

After such a late night 
working on my project, 
it was hard to wake up 
this morning!

After such a [MASK] 
night working on my 
project, it was hard to 
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning
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BERT is trained to perform two tasks.

• Masked language modeling
• Randomly select a subset of tokens from the training input and:
• Replace some of them with [MASK] tokens

• Replace some of them with other randomly sampled tokens

• Leave some of them unchanged

• For each sampled token, try to predict what the correct token is

• Next sentence prediction
• Predict whether pairs of sentences are actually adjacent to one another in text
• Prepend a [CLS] token to the pair of sentences

• Separate the two sentences using a [SEP] token

• Add segment embeddings to the model

• Assign a label based on the representation learned for the [CLS] token
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Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

1

After such a late night 
working on my project, 
it was hard to wake up 
this morning! I did 
though, because I had 
to give my project 
presentation.

[CLS] After such a late 
night working on my 
project, it was hard to wake 
up this morning! [SEP] I 
did though, because I had 
to give my project 
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2
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The development of BERT was the catalyst for 
an important shift in contemporary NLP.
• Training BERT was very time-consuming and resource-intensive, but it produced a 

model that could be reused for many purposes

• Researchers began to consider task formulations in which they could finetune a 
pretrained model for a new purpose, rather than training a smaller model for that 
purpose from scratch

Rule-Based Era
• Prior to ~1990s

Statistical and (Early) Neural Era
• 1990s to 2010s

Pretrain and Finetune Era
• Late 2010s to present
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Pretrain and Finetune Paradigm

• Intuition:

• If we take models that have been pretrained on massive datasets for other tasks, we can 
finetune them for our specific task while also taking advantage of the information that was 
learned during the pretraining process

• Popular pretrained model for this purpose: BERT
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How does finetuning work?

• Take a large model that has already been trained for some other task

• Add a task head to the model

• Task-specific layer(s) that take the input representations from the pretrained model and 
produce your desired output

• Update the parameters for the task head while ignoring or only minimally adjusting the 
weights for the pretrained model

• This will require that you have supervised training data for your target task
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Example: Finetuned Sarcasm Detector

[CLS] p1

Pretrained BERT

sarcasm
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Why does this work?

• Pretraining on large datasets allows language models to 
build high-quality representations facilitating general 
language understanding

• In many cases, this knowledge can be reused across 
many tasks
• Sentences are likely to have similar structure across many 

language domains

• Common sense knowledge is likely to transfer across 
problem settings

• Semantic relationships often hold across tasks

• Specialized tasks often have much less data available 
than the tasks used to train large language models

• By finetuning an existing model to perform the specialized 
task, we can retain the useful general language 
information we’ve learned and use it to help us more 
efficiently and effectively solve our specialized task
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Generative Transformers

• Although we’ve so far examined Transformer models in settings where they are trained 
(and potentially later finetuned) to predict specific labels, they can also be trained for 
autoregressive language modeling purposes

• Given the sequence of words that have been generated so far, decide which word should 
come next

• With autoregressive language modeling setups, we want to use causal (unidirectional) 
Transformers rather than bidirectional Transformers

• Bidirectional Transformers trivialize the learning task too much

• We want self-attention to only be computed based on what has already been generated
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Next 
Word 

Prediction

Next 
Word 

Prediction

Next 
Word 

Prediction

Autoregressive Generation

<s> Transformer generation

<s> generation Transformer is

<s> generation is Transformer fun
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Recent advancements to generative Transformers 
have also ushered in another new training paradigm.

• Fine-tuning pretrained models to perform new tasks works very well in many cases, but 
it still requires that you have a reasonably large supervised training set for the target 
task

• In some cases, we only have a very tiny amount of training data (or none at all) for our 
target task

Rule-Based Era
• Prior to ~1990s

Statistical and (Early) Neural 
Era
• 1990s to 2010s

Pretrain and Finetune Era
• Late 2010s to present

Pretrain and Prompt Era
• Early 2020s to present
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Pretrain and Prompt Paradigm

• Intuition:

• If we take extremely large generative language models that have been pretrained on a wide 
variety of language data, we can prompt them to produce labels or output for new tasks

• Popular pretrained model for this purpose: GPT

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m. 
flight.” Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get 
to her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance.  Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early 
morning airport security line.” Label:

Transformer
SARCASTIC
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How does prompting work?

• Take a large model that has already been trained to perform generative language 
modeling

• Develop a set of prompt templates for your task

• Prompt templates can be manually or automatically constructed

• Develop an approach for answer engineering

• Build an answer space (set of possible answers that your model may generate) and map that 
answer space to your desired outputs

• This can also be done manually or automatically using search techniques

• Format your input according to the relevant prompt template(s) and map the resulting 
language model output to your desired target output
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Why is this useful?

• Successful approaches using the pretrain and 
prompt paradigm are able to perform few-shot 
or even zero-shot learning for the target task

• Learning from few or no training examples

• This allows researchers to build models for 
tasks that were previously inaccessible due to 
extremely scarce resource availability

• Prompting also requires limited or no 
parameter tuning for the base language model, 
making it possible to develop classifiers more 
efficiently
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Which model should you use?

• Many approaches are now available for us to use when developing NLP systems, 
ranging from early rule-based techniques to very recent prompt-based methods

• In general, with each new modeling era of NLP we have sacrificed some degree of 
control and interpretability for increased performance

Rule-Based

• Complete control and 
interpretability, but very 
limited ability to 
generalize

Statistical

• We have immediate 
access to feature 
values and weights and 
can generalize a bit 
more broadly, but we 
require supervised 
training data

Neural End-to-End

• We no longer know our 
feature values or 
weights, but we can 
generalize more 
broadly and we know 
our exact inputs and 
outputs

Pretrain and Finetune

• We are generalizing 
from a wealth of broad 
knowledge, although 
we only know specific 
data/task details 
pertaining to our target 
task

Pretrain and Prompt

• We don’t know exactly 
how or why our model 
is making its decisions, 
but we achieve strong 
performance and no 
longer require 
supervised training 
data
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Remember, deep learning isn’t necessarily the 
best solution in all scenarios!
• Less interpretable

• Particularly important to consider when 
dealing with sensitive tasks (e.g., classifying 
health-related documents)

• Prompt-based approaches may generate 
inaccurate output and present it confidently

• May overfit with very low-resource 
problems

• May overcomplicate the solution
• In some cases, a naïve Bayes model may 

work just as well as a complex deep learning 
approach
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Tools for 
Implementing 

Deep Learning 
Systems

• Pretrained Language Models

• HuggingFace Model Hub: 
https://huggingface.co/models

• Deep Learning Frameworks

• PyTorch: https://pytorch.org/

• TensorFlow: https://www.tensorflow.org/

• Prompt Tuning Frameworks

• OpenPrompt: 
https://github.com/thunlp/OpenPrompt
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Summary: 
Overview of 
Deep Learning 
for NLP

• Many different forms of deep learning are popular in modern NLP

• Recurrent neural networks directly encode temporal context into the network’s 
computational units

• Convolutional neural networks increase efficiency by performing operations over 
regions of input data

• Transformers calculate self-attention to encode temporal context for the full input in 
a single step

• In many cases, we can build task-specific classifiers by fine-tuning large pretrained 
models

• Recently, researchers have also started developing new approaches to prompt large 
pretrained models for relevant output

• Although modern deep learning approaches work very well, they may sacrifice control 
and interpretability for performance gains

• It is important to consider your research problem and data characteristics carefully 
when determining how you will implement your solution
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